
In order for our videos to play via HTML5 video, we need to first

convert them. We want to do this when we upload our videos

via the uploader.

Before we start coding our transcoding job we will need to do

some setup on AWS. Our first task is to set up out Simple

Notification Service (SNS) Topic.

After logging into AWS we will open the services menu and

under the messaging category and click Simple Notification

Service.

To create a new SNS topic we will click the Create topic link.

We’ll give our topic a name. In this case we’ll just name our

topic TranscodingSNS.

Now that we have our topic we can setup our Transcoding

Pipeline, but we will need to comeback to add our webhook.

Our next task is to create two S3 buckets, one for our pre-

transcoding videos and one for our post-transcoding videos.

Let’s get started by heading over to the S3 service via the

service menu.

Click on the Create Bucket button

We’ll name our first bucket vids-drop.mytube.com

Click the Next Button

Leave default settings and click the Next Button

Leave default settings and click the Next Button

Click the Create Bucket Button

We will follow the previous steps to create our second bucket

named vids.mytube.com

Once vids.mytube.com is created, click on it, then click on

Permission

Click on Bucket Policy and paste the following policy

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "AddPerm",

 "Effect": "Allow",

 "Principal": "*",

 "Action": "s3:GetObject",

 "Resource":

"arn:aws:s3:::vids.mytube.com/*"

 }

]

}

Click Save

Next up we will go ahead and setup our Elastic Transcoder

Pipeline

Go back to the Services menu and then click on Elastic

Transcoder under the Application Services category.

Then click on the Create New Pipeline.

We’ll give our pipeline the name MyTube

Set vids-drop.mytube.com as the input bucket

For our output bucket we’ll use vids.mytube.com and set the

Storage Class to Standard

http://vids-drop.mytube.com/
http://vids-drop.mytube.com/

The S3 bucket we’ll use for our thumbnails will be

assets.mytube.com with the Storage Class set to Standard

We will need to know when our video has finished transcoding

so we’ll need to set up a notification.

Expand the Notification tab.

Set the On Complete Event to Use an existing SNS Topic

In the dropdown select the TranscodingSNS we created earlier

Finally click the Create Pipeline Button

Now we can setup our webhook

Open up the console again and generate a new webhook

controller

php artisan make:controller WebhookController

Open up the newly created WebhookController and include our

required libraries

use Aws\Sns\Message;

use Aws\Sns\MessageValidator;

use

Aws\Sns\Exception\InvalidSnsMessageException;

use App\Video;

Then we’ll define our index function

public function index(){

 $message =

Message::fromRawPostData();

 $validator = new

MessageValidator();

 try {

 $validator-

>validate($message);

 } catch

(InvalidSnsMessageException $e) {

 // Pretend we're not

here if the message is invalid.

http_response_code(404);

 error_log('SNS Message

Validation Error: ' . $e->getMessage());

 die();

 }

 // Check the type of the

message and handle the subscription.

 if ($message['Type'] ===

'SubscriptionConfirmation') {

 // Confirm the

subscription by sending a GET request to the

SubscribeURL

file_get_contents($message['SubscribeURL']);

 }

 if ($message['Type'] ===

'Notification') {

 $payload =

json_decode($message['Message']);

 if($payload-

>state == "COMPLETED"){

 $video = Video::where('job_id', $payload-

>jobId)->firstOrFail();

 $video->update([

 'processed' => true,

 'status' => "Completed"

]);

 }

 }

 }

In our web.php routes file add the post route to our webhook

Route::post('/webhook', 'WebhookController@index');

And to ensure that we don’t hit a CSRF error we need to add

the /webhook route to our VerifyCsrfToken.php middleware

located under App > Http > Middleware

To the except array we’ll add

protected $except = [

 '/webhook'

];

Now we can add this webhook to our SNS topic but first we’ll

need to use ngrok to make our local server available to the

outside world.

First serve the application

php artisan serve

Then we can use ngrok to expose http://localhost:8000 to the

world using the following command

ngrok http -subdomain=mytube 8000

Now we’ll have a unique URL that we can use to access our

local server.

Open up the TranscodingSNS Topic on AWS

Click Create Subscription

Inside the Endpoint Field we’ll add our webhook address

http://localhost:8000/
http://localhost:8000/

https://mytube.ngrok.io/webhook

Then click Create Subscription

Now check the new url from the list and click Request

Confirmations

After a second or two click the refresh icon and you should see

that the webhook has been confirmed

Now we need to create a upload video job using artisan.

php artisan make:job UploadVideo

Now we can open up new job under App > Jobs

We will be making use of the File and Storage Facades so will

need to include them, as well as include the Elastic Transcoder

Client and Video model.

use File;

use Storage;

use Aws\ElasticTranscoder\ElasticTranscoderClient;

use App\Video;

Next in out class right before the constructor function we’ll

define two public variables. One to store the file name and the

other to store the instance of the video.

public $filename;

public $video;

In our constructor we need to pass the video and filename that

we’ll store in our two variables;

public function __construct(Video $video,

$filename)

 {

 $this->filename = $filename;

 $this->video = $video;

 }

We will then need to populate our handle function. Our handle

function will upload the to S3 and then create a Transcoding job

with AWS’ Elastic Transcoder.

public function handle()

 {

 $file = storage_path() . "/uploads/" .

$this->filename;

 if($s3Url = Storage::disk('videosS3')-

>put($this->filename, fopen($file, 'r+'))){

 File::delete($file);

 $elasticTranscoder =

ElasticTranscoderClient::factory([

 'credentials' => [

 'key' => env('AWS_KEY'),

 'secret' => env('AWS_SECRET')

],

 'region' => 'us-east-1',

 'version' => 'latest'

]);

 $job = $elasticTranscoder-

>createJob([

 'PipelineId' => ‘{PIPELINEID}',

 'Input' => array(

 'Key' => $this->filename,

 'FrameRate' => 'auto',

 'Resolution' => 'auto',

 'AspectRatio' => 'auto',

 'Interlaced' => 'auto',

 'Container' => 'auto',

),

 'Outputs' => array(

 array(

 'Key' => $this->video-

>uid . '.mp4',

 'ThumbnailPattern' =>

'thumbs-' . $this->video->uid . '-{count}',

 'Rotate' => 'auto',

 'PresetId' =>

'1351620000001-000010',

),

),

]);

 $jobInfo = $job->get('Job');

 $this->video->update([

 'job_id' => $jobInfo['Id'],

 'status' => 'Transcoding'

]);

 }

 }

}

