
Using Open Data Protocol (OData) with RESTful web APIs  
REST is an architecture style for sending messages back and forth from client to server over HTTP. As 

there is no standard for querying and updating data, each client requires having specific implementation 

for each REST API. The Open Data Protocol (OData) defines a web protocol for querying and updating 

data via RESTful web APIs. In plain words, OData helps you to standardize data exchange over RESTful 

web services. Many companies including Microsoft, IBM, and SAP support OData today and it is 

governed by Organization for the Advancement of Structured Information Standards (OASIS). At 

the time of writing this book, the latest release of OData is version 4.0.  

Many API vendors started considering at OData for standardising their REST APIs, especially 

with release of OData version 4.0. A detailed discussion of OData is beyond the scope of this 

book. To learn more about OData, visit the official documentation page available at the following 

location: http://www.odata.org/documentation 

A quick look at the OData protocol 
OData provides you with a uniform way of describing the data and the data model. This helps when you 

need to consume REST APIs from various vendors. Let us take a quick look at some of the core features 

offered in OData with some example. 

URI convention for OData based REST APIs  

OData specification defines a set of recommendation for forming the URIs that identify OData based 

REST APIs. The URI for an OData service may take up to three part s as follows: 

Service root: Identifies the root of an OData service 

Resource path: Identifies the resources exposed by an OData service.  

Query string options: The query string identifies the query options (built-in or custom) for the 

resource.  

Here is an example: 

 

Insert image B04017_086_02.png 

 

Reading resources 

Resources from OData RESTful APIs are accessible via HTTP GET request. For instance the following 

GET request retrieves Departments entity collection from OData REST API server. 

GET http://localhost:8080/hrapp/odata/Departments HTTP/1.1 



The result that you may get from OData REST API server in response to the above call will be structured 

in accordance with OData protocol specification. This keeps client code simple and reusable. 

To read individual resource element, you can pass the unique identifier for the resource as shown in the 

following code snippet. The following example reads details of department with the given id:  

GET http://localhost:8080/hrapp/odata/Departments(10) HTTP/1.1. 

Querying data 

OData supports various kinds of query options as query parameters.  For instance $orderby can be used 

for sorting the query results. Here is an example: 

GET http://localhost:8080/hrapp/odata/Departments?$orderby= DepartmentName 
HTTP/1.1 

Similarly, you can use $select option for limiting the attributes on entity resources returned by a REST 

API. Here is an example: 

GET http://localhost:8080/hrapp/odata/Departments? 

$orderby=DepartmentName&$select=DepartmentName,ManagerId HTTP/1.1 

Some of the frequently used query options are listed below:  

Query Option Description Example 

$filter This option allows client  to 

filter a collection of resources  

/Employees? 

$filter=FirstName eq 
'Jobinesh'  

$expand Include the specified resource 

in line with retrieved resources 

/Departments(10)?$expand= 

Employees 

$select Include supplied attributes 

alone in the resulting entity 

/Departments?$select=Name, 
LocationId 

$orderby Sort the query result by one or 

more attributes  

Departments?$orderby= 
DepartmentName desc 

$top Returns only the specified 

number of items (from top) in 

the result collection 

Departments?$top=10 

$skip How many items needs to be 

skipped from top while 

returning the result 

Departments?$skip=10 

$count Total items in the result Departments/$count 

Modifying data  

Updatable OData services provides standardized interface for performing following operations on entities 

exposed via OData services: 

Create : Done via  HTTP POST 

Update: Done via HTTP PUT or HTTP PATCH. 

Delete: Done via  HTTP DELETE 

Relationship operations 

OData supports linking of related resources. Relationships from one entity to another are represented as 

navigation properties. Following API reads employees in HR department.  



http://localhost:8080/hrapp/odata/Departments(“HR”)/EmployeeDetails 

OData service even allows you to add, update and remove the relation via navigation properties. 

Following example shows how you can use navigation properties to link employee with id = 1700 to IT 

department. 

POST odata/Departments('IT')/Employees/$ref 

OData-Version: 4.0 

Content-Type: application/json;odata.metadata=minimal 

Accept: application/json 

{ 

"@odata.id": "odata/Employees(1700)" 

} 

Transforming JPA model in to OData enabled RESTful web services 
You can use Apache Olingo framework for enabling OData services for your JPA model.  Apache Olingo 

is an open source Java library that implements OData protocol. At the time of writing this book latest 

release of Olingo was based on OData Version 2 .0 specifications, and the support for OData Version 4.0 

were underway. 

With Olingo framework you can easily transform your JPA Models into OData Services using OData JPA 

Processor Library. 

The complete source code for this example is available in the Packt website. You can download 

the example from the Packt website link that we mentioned at the beginning of this book, in the 

Preface section. In the downloaded source code, see the project < rest-chapter8-
jaxrs>/rest-chapter8-odata-service . 

  High level steps for enabling OData 2 services for your JPA model are listed below: 

Build a web project for holding the RESTful web API components.  

Generate JPA entities for the application as appropriate. Now let us see how we can use Apache 

Olingo framework for generating OData services for your JPA model 

Add dependency to Olingo OData Library (Java) and OData JPA Processor Library. The 

complete list of jars are listed here: 
http://olingo.apache.org/doc/odata2/tutorials/CreateWebApp.html 

Add a Service Factory implementation that provides a means for initializing OData JPA 

Processors and data model provider (JPA entity). You can do this by adding s add a class that 

extends   org.apache.olingo.odata2.jpa.processor.api.ODataJPAServiceFactory 

as shown here:   

//Imports are removed for brevity 

public class ODataJPAServiceFactoryImpl extends   

    ODataJPAServiceFactory { 

   //HR-PU is the persistence unit configured in persistence.xml  

   //which is used in JPA model  

   final String PUNIT_NAME = "HR-PU"; 

   @Override 

   public ODataJPAContext initializeODataJPAContext()  

      throws ODataJPARuntimeException { 

 ODataJPAContext oDataJPAContext = getODataJPAContext(); 

 oDataJPAContext.setEntityManagerFactory( 

 JPAEntityManagerFactory. 



  getEntityManagerFactory(PUNIT_NAME)); 

 oDataJPAContext.setPersistenceUnitName(PUNIT_NAME); 

 return oDataJPAContext; 

   } 

  //Other methods are removed for brevity 

} 

 

Configure the web application by adding CXFNonSpringJaxrsServlet configuration to 

web.xml. Specify the service factory implementation class that you created in last as one of 

the init parameter for the servlet. The web.xml configuration may look like as shown here: 

<servlet> 

        <servlet-name>ODataEnabledJPAServlet</servlet-name>  

        <servlet-class> 

       org.apache.cxf.jaxrs.servlet.CXFNonSpringJaxrsServlet 

        </servlet-class>  

        <init-param> 

            <param-name>javax.ws.rs.Application</param-name>  

            <param-value> 

         org.apache.olingo.odata2.core.rest.app.ODataApplication 

            </param-value>  

        </init-param> 

        <init-param> 

            <param-name> 

             org.apache.olingo.odata2.service.factory 

            </param-name>  

            <param-value>   

              com.packtpub.odata.ODataJPAServiceFactoryImpl 

            </param-value>  

        </init-param> 

        <load-on-startup>1</load-on-startup>  

    </servlet> 

    <servlet-mapping> 

        <servlet-name>ODataEnabledJPAServlet</servlet-name>  

        <url-pattern>/odata/*</url-pattern>  

    </servlet-mapping> 

Now you can build the application and deploy it to a JAX-RS container such as GlassFish server. 

To test the deployment,  try accessing OData service as follows: 
http://localhost:8080/<appname>/odata 

 


