
Hitec Digital Servos Operation and Interface

Revision 0.4

1st June 2006

Introduction
This is based on the data gathered from the HFP-10 and the following servos:

HS-5475HB (Firmware Version 1.03)
HS-5245MG (Firmware Version 1.04)

HSR-5995TG (No Firmware Version given)
HS-5645MG (Firmware Version 1.04)

This document does not cover the HSR 8498HB. This robot servo is quite different. It
is not compatible with HFP-10. It uses a different electrical interface to support multi-
drop bus operation.

Inside the Hitec Digital Servo
This is mainly based on the HS-5475HB. The HS-5245MG looks similar, but being
smaller the circuit is on two sandwiched boards, so I can’t be sure.
The HSR-5995TG and the HS-5645MG have an ATmega8 processor instead of the
AT90LS4433. The processors are pin compatible.

Processor
The HS-5475HB servo is based on the Atmel AT90LS4433 processor, which has:

2.7V to 6V
4K Flash not reprogrammable in servo
128 bytes RAM
256 bytes EEPROM
UART
10 bit ADC
4 MHz Clock

The processor data sheet is available on the Atmel web site under mature devices:
http://www.atmel.com/dyn/products/product_card.asp?part_id=1998

I didn’t measure the clock; I think it is probably 4MHz
The HSR-5995TG and HS-5645MG are based on the ATmega8 processor which has:

2.7V to 5.5V
8K Flash self reprogrammable
1024 bytes RAM
512 bytes EEPROM
UART
10 bit ADC

4 MHz Clock
The processor data sheet is available on the Atmel web site:

http://www.atmel.com/dyn/resources/prod_documents/doc2486.pdf
There does not appear to be any reprogramming of Flash by the HFP10 at least in
version 1.02 software

Mechanics
The mechanics are conventional, motor, gear-train, and feedback pot (4K7Ohm). I
didn’t count the gear ratio.

Obviously the gears are of different material
Surprisingly the same pot seems to be used on all servos, and the quality while maybe
acceptable on a $40 servo, is low for a $150 servo
Physical end stops are on output shaft at just over 180 degrees (198 degrees I think)

Mechanical specs (torque, speed, etc.) are on Hitecrcd web page:
http://www.hitecrcd.com
And elsewhere.

Motor Driver
The motor is driven by a pair of Vishay Siliconix Si9958 Complimentary MOSFETS
in Bridge configuration.
http://www.vishay.com/doc?70141

The Bridges are driven from transistors and linked together. This has the unfortunate
situation that the bridge cannot be turned completely off. So the motor is either driven
or braked while power is applied to servo. No current or temperature monitoring is
performed on motor.

The MOSFETS heat up pretty quick under stall conditions, and are close to their
maximum ratings on the higher power servos.

Control Interface
The control interface is connected to the processor Port D0 and Port D1 pins which
are also the Uart TX and RX pins. The Port B0/ICP pin is also connected to the
UART RX pin, and likely measures the pulse width in PWM mode

The control input is protected by a 1K resistor and what appears to be a 4V7 zener on
the input. The control then goes to what appears to be the emitter of an NPN
transistor. The collector goes to the RX input of the processor, and the base is driven
by the processor TX through a 10K resistor.
When driven in PWM mode the swing on control is 0 to 4.8 Volts

For serial mode a light pulldown (I used 47K), is needed. The control input is pulled
up by the transistor. Too high a value for pulldown prevents a good low, too low
reduces the high from the servo.
The HSR-5995TG has a couple of extra diodes on the TX pin; this may be for higher
speed operation in HMI.

Other bits
Processor power is regulated to 3.1 Volts by regulator IC.

4K7 Feedback pot feeds to ADC input on processor between Vref and ground.

Schematic

Servo programmer HFP-10
I didn’t spend too much time looking at the programmer. Mine has version 1.02
software.

I made a simple board with two 3 pin headers, and a link on the control pin, to enable
isolation.

I used a Tek 318 logic analyser in serial mode on the control Pin. To determine if it
was the servo or the HFP sending data, I put fine wires direct to the processor RX and
TX pins on the servo.

Servo in PWM Mode
I didn’t check out the servo in PWM mode.
I would like to know how the servo reacts to pulses outside the 900 – 2100 uSec
range. Do they respond to 800, as if 900, or not at all?
Also do the pulses in the HMI document have any effect?
http://www.hitecrobotics.com/Tony%20information/HMI%20Protocol.pdf
The HSR-5995TG says position feedback on the box

Servo Electrical Interface in Serial Mode

Electrical
I used the following interface from the PC.

This pulls down the control input, allows the PC to send, receives data (including
what is sent), and controls the power up to the servo.

State of control input on power up seems to determine the mode (PWM or serial). I do
not know if you can send PWM in serial mode. I do know you have to follow the right
sequence to get into serial mode.
The data is inverted (Space = High), so can drive a PIC direct on RXD. The TXD
must be open collector or open source driver, which inverts, so best to use a processor
where TXD can be inverted.

Serial data configuration
The serial data is at 19.2K Async 8 bits 1 stop

Getting into Serial Mode
When the servo powers up with only a light pulldown (47K) on the control input, after
about 12mS the servo sends a “+” character and pulls up the control input. You must
respond to this “+” by sending back a “+”. This has to be done within a specific time
(needs to be measured).

A couple of seconds after you send the “+”, the servo sends another “+”. You are then
in serial communication.

Serial commands are ignored unless this start-up is performed. This is one of many
locks and checks in the servo software to prevent corruption of the configuration.

Command Format

Commands seem all to be of the 4 byte format

Command Type Address Data Checksum

When address and data are not required, the servo just seems to ignore them.

Response
Response 1 Response 2

An acknowledgment response is a “++”, a byte response is BYTE”+”, and a word
response is WORD only.

The checksum is
Command Type + Address + Data + Checksum = 0 (Mod 256)

There is no checksum on the servo response. The checksum is for protection of the
servo configuration, not for serial errors.
A bad checksum is responded with a “-“, and seems to drop out of serial mode, but I
haven’t really checked this.

Command Types
Command
Type
Character

Hex Command Function Addr Data Response
1

Response
2

a 61 Read EEPROM Addr n/u Data Byte +
b 62 Write EEPROM Addr Data + +
c 63 Read Data Memory Addr n/u Data Byte +
d 64 Write Data

Memory
Addr Data + +

e 65 Move Servo Data
High

Data
Low

+ +

f 66 Read Position n/u n/u Data High Data Low

EPROM Commands
The “a” and “b” commands read or write to the 256byte EEPROM respectively. The
HFP-10 only ever seems to access the locations 0 through 0x1C for writing, and the
locations 0 through 0x1C, and 0x30 through 0x4C for reading. The second set of
locations seems to be very much the same as the lower set. The second set may be the
factory defaults, or maybe a second configuration.

The location 0x1C appears to be a checksum of the bytes from 0 through 0x1B, so the
bytes add up to 0 (mod256). Therefore location 0x1C must also be modified for all
changes. If the EEPROM Checksum is not correct the servo does not operate on
power up (does not respond to PWM). When connected to the HFP-10 with a bad
checksum the HFP-10 displays “Fail”, and resets the EEPROM to default values.

It is not apparent how the higher locations are addressed on the ATMega8

EEPROM Locations

EEPROM
Address

Function Reset
Default
HS-
5475HB

Reset
Default
HS-
5245MG

Reset
Default
HS-
5645MG

Reset
Default
HSR-
5995TG

00 78 50 50 2B
01 DC BE B4 B4
02 Dead Band 02 02 02 02
03 64 96 96 46
04 01 01 01 01
05 05 06 09 05
06 Speed 40 40 40 40
07 Neutral High 0F 0F 0F 0F
08 Neutral Low A0 A0 A0 A0
09 0D 0D 0B 0D
0A 48 48 B8 48
0B 21 21 23 21
0C 98 98 28 98
0D 00 00 00 00
0E 38 39 0A 46
0F 03 03 03 03
10 C9 AF E8 C1
11 17 17 17 17
12 CC CC D0 CC
13 Endpoint Left 70 75 74 F3

14 Endpoint Right 70 75 74 F3
15 03 03 03 03
16 E8 E8 E8 E8
17 03 03 03 03
18 E8 E8 E8 E8
19 Failsafe Point High 17 17 17 17
1A Failsafe Point Low CC CC 70 CC
1B Clockwise(bit

0)/Failsafe Enable(bit
1)

01 01 01 01

1C EEPROM Checksum
(00 to 0x1B)

BA E4 3B 10

1D 08 06 04 0E
1E FF FF FF FF
1F FF 00 00 00
20 to 2F FF FF FF FF
30 78 50 50 64
31 DC BE B4 B4
32 02 02 02 02
33 64 96 96 46
34 01 01 01 01
35 05 06 09 05
36 40 40 40 40
37 0F 0F 0F 0F
38 A0 A0 A0 A0
39 0B 0B 0B 11
3A B8 B8 B8 40
3B 23 23 23 1E
3C 28 28 28 60
3D 00 00 00 00
3E 0A 0A 0A 0A
3F 03 03 03 03
40 E8 E8 E8 E8
41 17 17 17 17
42 D0 D0 D0 D0
43 70 75 74 F3
44 70 75 74 F3
45 03 03 03 03
46 E8 E8 E8 E8
47 03 03 03 03
48 E8 E8 E8 E8
49 17 17 17 17
4A 70 70 70 70
4B 01 01 01 01
4C EEPROM Checksum

(0x30 to 0x4)
BC 29 3B 32

4D 08 06 04 0E
4E FF FF FF FF

4F FF 00 00 00
50 to 5F FF FF FF FF
60 Servo Type 48(H) 48(H) 48(H) 48(H)
61 53(S) 53(S) 53(S) 53(S)
62 35(5) 35(5) 35(5) 52(R)
63 34(4) 32(2) 36(6) 35(5)
64 37(7) 34(4) 34(4) 39(9)
65 35(5) 35(5) 35(5) 39(9)
66 48(H) 4D(M) 4D(M) 35(5)
67 47(B) 47(G) 47(G) 54(T)
68 Null 00 00 00 47(G)
69 FF 41(A) 41(A) 00
6A FF 4C(L) 4C(L) 4C(L)
6B FF 49(I) 49(I) 49(I)
6C FF 5A(Z) 5A(Z) 5A(Z)
6D FF 45(E) 45(E) 45(E)
6E FF 44(D) 44(D) 44(D)
6F FF 00 00 00
70 15 08 07 08
71 08 0C 0A 0C
72 07 07 07 07
73 D4 D5 D4 D5
74 to 7F FF FF FF FF
80 Serial Number? 30(0) 30(0) 30(0) 30(0)
81 30(0) 32(2) 30(0) 32(2)
82 37(7) 34(4) 39(9) 37(7)
83 32(2) 39(9) 33(3) 35(5)
84 35(5) 37(7) 38(8) 31(1)
85 33(3) 32(2) 32(2) 37(7)
86 34(4) 30(0) 35(5) 37(7)
87 Null 00 00 00 00
88 to FF FF FF FF FF

Data Memory Commands
The “c” and “d” commands read or write to the 256byte data memory area
respectively. The HFP-10 only ever seems to use the d command.
The format of the data memory is in the Atmel data sheet. It appears possible to
access contents of both the RAM and also the registers including I/O.
No idea how the Data memory locations higher than 256 are accessed on ATMega8.
Also no idea how flash can be boot loaded
Some data memory contents are important and accessed by the HFP10 to control the
operation of the servo.

Data
Memory
Address

Function Reset
Default
HS-
5475HB

Reset
Default
HS-
5245MG

Reset
Default
HS-
5645MG

Reset
Default
HSR-
5995TG

18 May be direction 01 01 01 01

80 78 50 50 64
81 78 50 50 64
82 DC BE B4 B4
87 40 40 40 40
88 0F 0F 0F 0F
89 A0 A0 A0 A0
8E 00 00 00 00
8F 38 39 0A 46
90 03 03 03 03
91 C7 AF E8 C2
92 17 17 17 17
93 CC CC D0 CC
96 End Point Left 70 75 75 F3
97 End Point Right 70 75 75 F3

Read Position Command
The read position command (e) appears to be a direct read of the ADC in the
processor from the feedback pot. I get the same result as when I read the ADC
registers from the data memory. The ADC is 10 bit, so the range of values is from 0 to
1024. The physical endpoint stops give an actual range of values of 68(0x44) to 956
(0x3BC) for my servo. So this is the best accuracy that could be achieved, though this
may be compromised by the pot.

Move Servo Command
The move servo command (f) appears to move the servo position. The range of
acceptable values on my servo seems to be 3200 (0xC80) to 8344 (0x8344). This is
strange, and I do not really understand the positioning and the relationship between
actual position, desired position, neutral and endpoints. Values outside the acceptable
range do not move the servo.

During reset the servo is calibrated moving from end stop to end stop and reading
position. Here the values of 3600 (900uSec * 4) and 8400 (2100uSec * 4) are used.
These are of course consistent with an internal timer for the PWM clocked at 4MHz.
I just don’t understand where the 3200 and 8344 come from, close but no cigar !

Key Operations
The following is how the HPF-10 performs the following actions:

HFP-10 Reset
When the reset command is first invoked the HFP-10 does the following:

Action Location Content Comment
Write Data Memory 80 00
Write Data Memory 82 00 After this the motor is

off
Write Data Memory 81 00
Read EEPROM 00 to 1C ….
Read EEPROM 30 to 4C ….

Write Data Memory 18 00
Write Data Memory 87 01
Write Data Memory 96 FF
Write Data Memory 97 FF
Write Data Memory 88 0F
Write Data Memory 89 CC

If the actual reset is invoked (L & R buttons together) the HFP-10 does the following:

Action Location Content Comment
Write Data Memory 90 03
Write Data Memory 91 FF
Write Data Memory 8E 00
Write Data Memory 8F 00
Write Data Memory 92 17
Write Data Memory 93 CC
Write Data Memory 87 30
Write Data Memory 80 00
Write Data Memory 81 00
Move Servo 0E10 Go to left end stop
Read Position 44 Get left position
Move Servo 20D0 Go to right end stop
Read Position 03BC Get right position
Write Data Memory 80 00
Write Data Memory 82 00 After this the motor is

off
Write Data Memory 81 00
Write EEPROM 0 to 0x1C … Initialises the

EEPROM

HFP-10 Set Deadband
When set deadband is invoked on the HFP-10 does the following:

Action Location Content Comment
Write Data Memory 80 00
Write Data Memory 82 00 After this the motor is

off
Write Data Memory 81 00
Read EEPROM 00 to 1C ….
Read EEPROM 30 to 4C ….
Write Data Memory 18 00
Write Data Memory 87 01
Write Data Memory 96 FF
Write Data Memory 97 FF
Write Data Memory 88 0F
Write Data Memory 89 CC

When the deadband value is changed (m button) the HFP-10 sends:

Action Location Content Comment
Write EEPROM 02 Deadband Range 0x00 to 0x10
Write EEPROM 1C Check

HFP-10 Set Direction
When set direction is invoked on the HFP-10 does the following:

Action Location Content Comment
Write Data Memory 80 00
Write Data Memory 82 00 After this the motor is

off
Write Data Memory 81 00
Read EEPROM 00 to 1C ….
Read EEPROM 30 to 4C ….
Write Data Memory 18 00
Write Data Memory 87 01
Write Data Memory 96 FF
Write Data Memory 97 FF
Write Data Memory 88 0F
Write Data Memory 89 CC

When the direction is changed (L /R button) the HFP-10 sends:

Action Location Content Comment
Write EEPROM 13 Endpoint Move Right Endpoint
Write EEPROM 14 Endpoint Move Left Endpoint
Write EEPROM 19 Failsafe

High
Move Failsafe

Write EEPROM 1A Failsafe
Low

Move Failsafe

Write EEPROM 1B Direction Bit 0 is set for CW
note this is a bit
change and must
preserve the other
bits

Write EEPROM 1C Check

HFP-10 Set Speed
When set speed is invoked on the HFP-10 does the following:

Action Location Content Comment
Write Data Memory 80 00
Write Data Memory 82 00 After this the motor is

off
Write Data Memory 81 00
Read EEPROM 00 to 1C ….
Read EEPROM 30 to 4C ….

Write Data Memory 18 00
Write Data Memory 87 01
Write Data Memory 96 FF
Write Data Memory 97 FF
Write Data Memory 88 0F
Write Data Memory 89 CC

When the speed value is changed (m button) the HFP-10 sends:

Action Location Content Comment
Write EEPROM 06 Speed Range 0x00 to 0x40
Write EEPROM 1C Check

HFP-10 Enable Failsafe
When set enable failsafe is invoked on the HFP-10 does the following:

Action Location Content Comment
Write Data Memory 80 00
Write Data Memory 82 00 After this the motor is

off
Write Data Memory 81 00
Read EEPROM 00 to 1C ….
Read EEPROM 30 to 4C ….
Write Data Memory 18 00
Write Data Memory 87 01
Write Data Memory 96 FF
Write Data Memory 97 FF
Write Data Memory 88 0F
Write Data Memory 89 CC

When the failsafe is changed (L /R button) the HFP-10 sends:

Action Location Content Comment
Write EEPROM 1B Failsafe Bit 1 is set for enable,

note this is a bit
change and must
preserve the other
bits

Write EEPROM 1C Check

HFP-10 Change Failsafe/Neutral/Endpoint Position
When change failsafe/neutral/endpoint position is invoked on the HFP-10 (after centre
set on pot) does the following:

Action Location Content Comment
Write Data Memory 80 00
Write Data Memory 82 00 After this the motor is

off
Write Data Memory 81 00
Read EEPROM 00 to 1C ….
Read EEPROM 30 to 4C ….
Write Data Memory 18 00
Write Data Memory 87 01
Write Data Memory 96 FF
Write Data Memory 97 FF
Write Data Memory 88 0F
Write Data Memory 89 CC
Move Servo Values

determined
by the
HFP-10
pot

Does these two in a
loop until a function
is requested

Read Position Values
determined
by the
servo
position

When the failsafe is set the HFP-10 sends:

Action Location Content Comment
Write EEPROM 19 Failsafe

High
Write EEPROM 1A Failsafe

Low
Write EEPROM 1C Check

When the neutral is set the HFP-10 sends:

Action Location Content Comment
Write EEPROM 07 Neutral

High
Write EEPROM 08 Neutral

Low
Write EEPROM 13 Endpoint

Left
Value set to 0x16

Write EEPROM 14 Endpoint
Right

Value set to 0x16

Write EEPROM 1C Check

When the left endpoint is set the HFP-10 sends:

Action Location Content Comment
Write EEPROM 13 Endpoint

Left
Write EEPROM 1C Check

When the right endpoint is set the HFP-10 sends:

Action Location Content Comment
Write EEPROM 14 Endpoint

Right
Write EEPROM 1C Check

On the HSR-5995TG the endpoints on reset are set outside the end stops of the servo;
hence it is possible to overheat the servo by driving past the physical end points.

PC Code
The Visual Basic 2005 code I used is supplied as separate file

