
[1]

Interpreting Commands,
Implementing Pipe-based

Communications, and
Testing Modules

When building any project that consists of multiple modules, it is beneficial to first
incrementally build and test the individual programs in isolation. By building a
small test application, it's possible to expose most likely errors before you have
multiple modules talking to each other.

The materials in this appendix should help you to understand both the
implementation methods and the testing routines that help us to gain
confidence that the application is performing correctly.

Interpreting Commands, Implementing Pipe-based Communications, and Testing Modules

[2]

The following image shows the line-following robot built and ready:

Interpreting commands
Let's start this part of the project by creating a small program that listens for user
input (the keyboard is connected to the stdin port) for input commands and outputs
results to the LXterminal text-mode display (stdout port). To create the program,
perform the following steps:

1.	 Download the programs from the Chapter 8 folder (which can be found at
http://1drv.ms/1ysAxkl)into your /home/pi/robot directory.

2.	 Start IDLE 2 (we are using Python 2 instead of Python 3) and open
listener.py.

The listing is as follows:

#!/usr/bin/python

import sys

def userfunc1():
 print 'Data + 10 = ' + str(cmddata[1] +10) + ' ',

def userfunc2():
 print 'This is a test ',

Chapter 8

[3]

def closeandexit():
 sys.exit('Bye....')

def main():
 while True:
 print 'ok:'
 global cmddata
 try:
 inputstr = raw_input()
 inputstr += ',0,0' #need at least one
item
 cmddata = eval(inputstr,{'__builtins__':None},
 {'userfunc2':userfunc2,
 'userfunc1':userfunc1,
 'close':closeandexit })
 cmddata[0]() #execute the
 command
 except (KeyboardInterrupt, EOFError, NameError,
 SyntaxError, IndexError, TypeError) as err:
 if 'KeyboardInterrupt' in str(type(err)): break
 if 'EOFError' in str(type(err)): break
 print 'Error ',

if __name__ == '__main__':

 main()

When the program starts, it enters an infinite loop (while True) and waits for user
input (raw_input()). The magic starts when the user enters a command that is
recognized (the eval() function). The eval() function parses the input string into
a tuple that contains a command address as the element [0]. This address can be
executed (called) just like any other function in the program, and on the next line, the
function in cmddata[0] is called (cmddata[0]()).

If there are any errors, they are handled in the except: function, and then the
program prints results and loops back for more user input data.

The eval() function is a very powerful tool to parse directly validated function
commands in the user input stream without having to do a lot of string comparisons
and parsing checks.

Interpreting Commands, Implementing Pipe-based Communications, and Testing Modules

[4]

The following is an example of what you can expect to see in the Python Shell
window:

>>> ================================ RESTART ===========
>>>
ok:
userfunc2 #command entered
This is a test ok: #the command executed
>>> type(cmddata) #after a <Ctrl> + C
<type 'tuple'>
>>> type(cmddata[0])
<type 'function'>
>>> print cmddata #print the tuple
(<function userfunc2 at 0xb521ee70>, 0, 0)

The eval() function is considered a serious security risk in Python since it can allow a
hacker to execute arbitrary function code if not constrained. Here, we have specified (in
curly braces) a whitelist of functions that can be accepted. For more details, see http://
lybniz2.sourceforge.net/safeeval.html.

There is one small problem with the program in its current form, writing to the
stdout port is buffered by the operating system. This means that you can never be
sure when you get data sent to the stdout port that the program prints rendering it
on the screen, or sent through a pipe. For our line-following robot project, we need
to ensure that all data written to the stdout port is sent immediately, line by line
without delay.

If you close the listener.py program and open the listener1.py program, you
will see that the following code is identical except that all the print statements have
been replaced by a function called flushout('thestringtoprint'):

#!/usr/bin/python

import sys

def flushout(mystring):
 sys.stdout.write(mystring)
 sys.stdout.flush()

def userfunc1():
 flushout ('Data + 10 = ' + str(cmddata[1] +10) + ' ')

def userfunc2():
 flushout('This is a test ')

Chapter 8

[5]

def closeandexit():
 sys.exit('Bye....')

def main():
 while True:
 flushout('ok:')
 global cmddata
 try:
 inputstr = raw_input()
 inputstr += ',0,0' #need at least one item
 cmddata = eval(inputstr,{'__builtins__':None},
 {'userfunc2':userfunc2,
 'userfunc1':userfunc1,
 'close':closeandexit })
 cmddata[0]() #execute the command
 except (KeyboardInterrupt, EOFError, NameError,
 SyntaxError, IndexError, TypeError) as err:
 if 'KeyboardInterrupt' in str(type(err)): break
 if 'EOFError' in str(type(err)): break
 flushout('Error ')

if __name__ == '__main__':

 main()

The flushout() function uses sys.stdout.flush to immediately send data in
the stdout buffer. The code shown in listener1.py will become the code used to
handle input/output for the rbuttons.py, rcam.py, and rwheel.py modules of the
robot.

If you have any problems with the Python IDLE environment not
reflecting user input, try using the program from the command
line, or close it and restart Python Shell.

Interpreting Commands, Implementing Pipe-based Communications, and Testing Modules

[6]

Implementing pipe-based interprocess
communication
Pipes are used commonly in the command line and in scripts to send the output
data of one program to the input of another, for example, if you type ls -l in the
command-line prompt, you get an alphabetically-sorted file listing. If you type ls
–l | sort, you get the listing sorted with directories first. The "|" pipe symbol tells
the shell to create a memory-resident connection between the two programs ls and
sort.

Now that we have listener1.py working, we need to build a test program to
instantiate the program with a pipe in place by performing the following steps:

1.	 Open test-pipe.py in the IDLE 2 IDE and examine the code.
2.	 Review the key functions of the module in the following table:

Function Description
initpipe() This uses a with statement to send a stderr output to a file

and then starts a program using Popen() (in our case, it will be
listener1.py) with pipe connections to stdin and stdout. It
reads a line from the stdout pipe (this is the first data produced by
the listener1.py module) and checks whether it contains "ok:"
in the output string. If it prints a ready message (note that we are
still using print functions to send the local output to the console in
test-pipe.py).

pingpipe() This is similar to flushout(); it sends the string we want to print
to the remote stdin port but then waits to read the response from
the remote stdout port.

Main() This is the test logic, and it instantiates two copies of listener1.
py, sends 200 or 2,000 commands (depending on whether or not you
are printing) to the child processes, and calculates the number of
messages sent per second.

The following is the code for test-pipe.py:

#!/usr/bin/python

import sys
from time import time
from subprocess import call, Popen, PIPE, STDOUT

piperef=[0,1]
campipe=0

Chapter 8

[7]

i2cpipe=1
printon=False

def initpipe(pipenum, progstr):
 global piperef
 try:
 with open('stderr_' + str(pipenum) + '.txt', 'wb') as err:
 piperef[pipenum]=Popen(['python', progstr],
 stdout=PIPE, stdin=PIPE,
stderr=err)
 x = piperef[pipenum].stdout.readline()
 if 'ok:' in x:
 print progstr + ' ready'
 return False
 else:
 print 'Wrong response from child ' + progstr
 return True
 except IOError:
 print 'IOError on init'
 return True

def pingpipe(pipenum, sendstr):
 global piperef
 try:
 piperef[pipenum].stdin.write(sendstr)
 piperef[pipenum].stdin.flush()
 return piperef[pipenum].stdout.readline()
 except IOError:
 print 'IOError on pipe send ', pipenum
 return True

def main():
 if initpipe(campipe, 'listener1.py'):
 #an Error occured
 print 'Error creating pipe ', campipe
 exit
 if initpipe(i2cpipe, 'listener1.py'):
 #an Error occured
 print 'Error creating pipe ', i2cpipe
 exit
 start=time()
 if printon:
 loopcount=200
 else:

Interpreting Commands, Implementing Pipe-based Communications, and Testing Modules

[8]

 loopcount=2000
 for i in range(1,loopcount):
 x = pingpipe(campipe, 'userfunc2\n')
 if x == True:
 print 'Error on pipe send ', campipe
 else:
 if printon : print 'Pipe=', campipe, x,

 x = pingpipe(i2cpipe, 'userfunc1,2,3\n')
 if x == True:
 print 'Error on pipe send', i2cpipe
 else:
 if printon : print 'Pipe=', i2cpipe, x,
 stop=time()
 print int(2 * loopcount/(stop-start)), 'transactions per
second'

 piperef[campipe].kill()
 piperef[i2cpipe].kill()

if __name__ == '__main__':

 main()

Note that even though we are instantiating multiple copies of listener1.py, the
descriptors are campipe and i2cpipe since these are what we will eventually use.

The code in the main() function sends 2,000 requests from a userfuncx command to
each instance of listener1.py and calculates the number of transactions achieved.
The number of message transactions that can be achieved depends on how many
processes are running on the computer and the following conditions:

•	 Whether the transaction is being executed in the IDLE IDE or directly from
the command line

•	 Whether the user is on a remote computer (SSH, PuTTy) or a local one
•	 Whether or not the controlling program is using print statements

Execution Location No print @
700 MHz

No print @
900 MHz

Print
@ 700
MHz

Print
@ 900
MHz

Desktop IDLE IDE 690 760 7 7
Root Shell (no desktop) 790 870 225 260
LXterminal Shell 780 820 270 280

Chapter 8

[9]

Execution Location No print @
700 MHz

No print @
900 MHz

Print
@ 700
MHz

Print
@ 900
MHz

Remote PuTTy session (no desktop, eth0) 800 830 400 440
Remote PuTTy session (no desktop, wlan0) 790 870 430 500

Note that in the preceding table, the print statements in the Python IDE are
particularly CPU-intensive, and the best performance (highlighted in bold) is via
a remote session at 900 MHz with no printing to the test-pipe.py console. This
means that it takes approximately 1.2 – 1.3 ms to send a command and receive a
reply between the processes, providing there is no console printing required. Of
course, the processing times for the remote application will extend this time in
realtime use.

You can experiment with the test-pipe.py and listener1.py programs to
evaluate their ability to parse commands and produce results.

Note that if the remote application does not emit the right number of
lines (too many or too few), then you could get out of sync and the
machine could hang. The critical element in using pipes in this manner is
ensuring that for every input request, there is only a single-line response.

Test routines for robot modules
For each application used to implement the robot, there is a test routine available.
You can use these test routines to help solve problems with each function. The
programs are very similar to the test-pipe.py shown earlier. The test programs are
as follows:

•	 test-buttons.py: This flashes the LED on and off to calculate the
transaction rate and then waits for button activity. The button GPIO(21)
will shut down the computer, and GPIO(20) will exit the test program. This
instantiates rbuttons.py as the root.

•	 test-camera.py: This does 100 line0 requests to rcam.py to test the
transaction rate. You can turn on the camera preview window to show the
image data if you have a local display.

•	 Test-wheels.py: This does 100 servowr,0,450 commands to rwheel.py to
calculate the transaction rate.

You can download all the test programs from the Chapter 8 folder at http://1drv.
ms/1ysAxkl.

Interpreting Commands, Implementing Pipe-based Communications, and Testing Modules

[10]

Testing rbuttons.py
Now that you've downloaded the files, complete a test cycle of rbuttons.py by
performing the following steps:

1.	 Open IDLE again (non-privileged).
2.	 Open test-buttons.py in the Python IDE. This application is very similar

to the test-pipe.py program and completes the following tasks:
°° It initializes the pipe (which instantiates the child program) and

sends 200 or 2,000 commands to turn the LED on and off
°° It calculates the transactions per second
°° It monitors for switch events
°° It uses the switch on GPIO(21) to initiate a shutdown of the

Raspberry Pi

3.	 Review the key functions in the following table:

Function Description
initpipe() One small but significant change in the definition is that the Popen()

function now starts the child application using sudo python
rbuttons.py, as shown in the following code fragment that gives it root
privileges:

with open(progstr + '_stderr_' + str(pipenum) +
'.txt', 'wb') as err:
 piperef[pipenum]=Popen(['sudo', 'python',
progstr],
 stdout=PIPE,
 stdin=PIPE, stderr=err)

pingpipe() This is identical to that used in test-pipe.py and writes a string to the
child stdin and reads from the child stdout port.

Chapter 8

[11]

Function Description
Main() This is very similar to the one used in test-pipe.py. The transaction

calculations are done with the as loop turning the LED on and off,
and then using the following code to sense the switches and perform
actions:

#Wait for switch action
 while True:
 x = pingpipe(digio, 'rdswevents\n')
 if x == True:
 print 'Error on pipe send ', digio
 else:
 if 'ok:' in x and x[11] == ']':
 y=eval(x[0:12])
 if y[0] :
 z=Popen(['sudo', 'shutdown',
'-h', 'now'])
 print 'Shutdown in process'
 break
 if y[1] : break
 else:
 print 'Return string error '

 sys.exit('Closing application')

Notice that if the return string from the child contains "ok:" and has a "]" in the
eleventh position of the string (we assume that the string is ok), it is then built into
a list (y=[]) using eval(). We can now test each switch flag. y[0] = gpio(21) and
y[1] = gpio(20). We use y[0] to initiate a shutdown and y[1] to exit the program.

1.	 Familiarize yourself with the code in the IDE.
2.	 Close the IDE.
3.	 Execute the application from the command line using Python's test-

buttons.py. If you set the executable flag on the program file, you can start
it with ./test-buttons.py.

Interpreting Commands, Implementing Pipe-based Communications, and Testing Modules

[12]

Note that you no longer need to be concerned with the root
privileges requirement. Providing that the user identity you use can
use root privileges, the application will instantiate the rbuttons.
py with the correct privileges to use the GPIO functions.

Testing rcam.py
The test-camera.py program is very similar to our other test programs. The
program initializes the pipe (which instantiates the child program rcam.py) and
sends 100 line018 commands to capture frames and calculate the number of frames
per second that can be processed. Perform the following steps to test rcam.py:

1.	 Open test-camera.py in the Python IDE.
2.	 Review the key functions in the following table:

Function Description
initpipe() This initializes the pipe and the in-memory buffer to capture frame data.

pingpipe() This is identical to that used in test-pipe.py, writes string to the child
stdin, and reads from the child stdout.

Main() This is very similar to that used in test-pipe.py. The transaction
calculations are done with the as loop capturing frames:

loopcount=100
 for i in range(1,loopcount):
 x = pingpipe(camref, 'line018\n')
 if x == True:
 print 'Error on pipe send ', camref
 else:
 if printon : print 'Pipe=', camref,
 x,
 stop=time()
 print str(loopcount/(stop-start)), 'frames
 per second'
 sys.exit('Closing application')

Chapter 8

[13]

Testing the performance of rcam.py
Run the following tests to assess the performance of your rcam.py module:

•	 The cost of data:
1.	 Set the command used for frame capture to either line0 or line018

in test-camera.py.
2.	 Assess the cost of data sent back to the parent process.

•	 The cost of preview feature:
1.	 Set campreview=False or campreview=True in rcam.py.
2.	 Assess the cost of turning the PiCam preview feature and off.

•	 The benefits of higher clock speed:

1.	 Set the CPU clock speed to 900 MHz using set-perf +.
2.	 Assess whether higher clock speed is beneficial.

Potential test results
By understanding the implications of the various options, you can potentially
achieve 7.5 frames per second in IDLE Shell at 700 MHz and close to 9 frames per
second from the command line at 900 MHz.

Testing rwheel.py
As with our other modules, we will run a test program for rwheel.py; to do this,
perform the following steps:

1.	 Open the Python 2 IDLE IDE (non-privileged).
2.	 Open test-wheels.py.

This application is very similar to the test-pipe.py program. The
program initializes the pipe (which instantiates the child program),
sends 1000 commands to servowr,0,450, and calculates the
transactions per second.

Interpreting Commands, Implementing Pipe-based Communications, and Testing Modules

[14]

3.	 Review the key functions in the following table:

Function Description
initpipe() One small but significant change in the definition is that the Popen()

function now starts the child application using sudo python rwheel.
py, as shown in the following code fragment, which gives it root
privileges:
with open(progstr + '_stderr_' + str(pipenum) +
'.txt', 'wb') as err:

 piperef[pipenum]=Popen(['sudo', 'python', progstr],

 stdout=PIPE, stdin=PIPE,
stderr=err)

pingpipe() This is identical to that used in test-pipe.py, writes strings to the child
stdin, and reads from the child stdout.

Main() This is very similar to that used in test-pipe.py. The transaction
calculations are done with the as loop setting a servo value.

Notice that you no longer need to be concerned with the root privileges requirement
for rwheel.py. Providing the user identity you use can use root privileges,
the application will instantiate rwheel.py with the correct privileges to use
the smbus functions.

	_GoBack

