
[1]

Internet Radio Projects 2b,
2c and 3

Project 2b – parsing the playlist file for
the Internet radio
Now that we have the playlist file defined and have added some entries, we need to
be able to read the file and build the internal data structures that will be used to hold
station data in the Internet radio.

Running parse.py
A fundamental component of the Internet radio is its ability to read the playlist file.
Let's look at the code involved in that function:

1.	 Download the parse.py program and place it in the /home/pi/radio/bin
folder.

2.	 Start IDLE3 to run the program:

1.	 Open IDLE3. If only the shell window opens, select File | New
Window to open an Editor window.

2.	 In the Editor window, open the parse.py program.

Internet Radio Projects 2b, 2c and 3

[2]

The code in the parse.py file should help you to understand how the rest of the
application is defined. Since you have built the playlist file already, let's start the
application using Run | Run Module in the Editor window. The application will
read the playlist file, print the results and build the internal storage array for the
stations. The following is the code to accomplish this:

#!/usr/bin/python3
#global variables
strPlaylist="/home/pi/radio/playlist"
stationarray=[]
stationcount=0 2

def ParsePlaylist(filename):
 stationlist=[]
 printlist=[]
 global stationcount
 try:
 with open(filename, "r") as input:
 for line in input:
 if ("," in line):
 line=line.replace(" ","")
 line= line.split(",")
 stationlist=stationlist + line
 printlist=line
 stationcount += 1
 print(stationcount, printlist[0])
 input.close()
 except IOError:
 print ("Unable to open ", filename)
 return # exit()
 return (stationlist)
stationarray=ParsePlaylist(strPlaylist)
print("\n", stationarray)

It is important to note that this code has four separate definition areas:

1.	 The global variables are defined.
2.	 A function is defined that holds all the code to open, read, and process

the playlist file.
3.	 There is a standalone Python statement that calls the function and uses the

return data to build the station data in a Python list called stationarray.
4.	 Lastly, there is a print statement that shows the Python list for the stations.

Chapter 4

[3]

While we are not trying to teach Python programming, it's worth pointing out the
following explanations, which may help you to better understand the blocks of code:

•	 The def block of code for the ParsePlaylist function has local variables
visible only within the function. If you define a variable outside any function
code, it can be made globally available within a function using the global
keyword. If you define a local variable within a function and it has the same
name as a variable outside that definition, you can't get to see the global one.
It's good practice to always think of the variables outside of functions or
classes as global and use the global keyword to highlight the scope needed
within the functions.

•	 There is a try: / except: block in the code that is used to capture errors
that might occur. In this case, we will want to capture an error if the playlist
file does not exist, so it uses the except IOError: statement to capture
such exceptions.

Project 2c – designing a Python text
interface for VLC
This project is a simple text interface with the following features:

•	 Reads the Internet station streams we want from a file called /home/radio/
playlist

•	 Shows the first item in the playlist as the default, and it will play as soon as
the application loads

•	 Prints out a list of the stations in the playlist file
•	 Allows you to enter a station number to start playing any station
•	 Implements a simple retry mechanism if stations don't start to play

within 2 seconds
•	 Allows you to enter 0 to exit the program

Running radio.py
Before we can begin this next exercise, you will need to download the radio.py
program and place it in the /home/pi/radio/bin folder.

This download is the complete implementation of the radio using Python 3 with a
text-mode interface. The VLC application should already be running if you followed
the earlier tasks. You can check with Task Manager and also log in to it via Telnet to
check whether VLC is functioning.

Internet Radio Projects 2b, 2c and 3

[4]

When you download the radio.py code, you will notice that it is laid out as a group
of defined functions that implement the radio logic as described here:

1.	 def ParsePlaylist (filename): This opens the playlist file, prints a count
number and station description, and finally returns the information to create
the stationarray list.

2.	 def CreateSession(host, port, timeout): This connects to the
VLC Telnet server and uses a try:/except: block to capture timeouts or
connection failures. One thing to note here is that the Telnet protocol uses a
strict ASCII character stream, so the .encode function converts the internal
default UTF-8 format to ASCII.

Read about ASCII codes at:
http://en.wikipedia.org/wiki/ASCII

3.	 def AddStationtoPlaylist(stationnum): This uses the clear
command to empty the playlist and then an add command with the station
URL to write the station URL to the VLC playlist.

4.	 def ClearPlaylist(): The reason for this function may not be immediately
apparent, but it prevents the number of entries in the VLC playlist from
accumulating. It uses the clear command to reset the VLC playlist. You
might notice, however, that the numerical identifiers for the VLC playlist just
keep incrementing as you clear, and add to, the playlist.

5.	 def PlayRadio(): This provides the initialization logic and a while loop to
interface with the user.

Chapter 4

[5]

The final line of Python code, PlayRadio(), simply calls the function to start the
operation of the radio. The text-based user interface looks like this:

Notice in the preceding image that the output is rather verbose and you only get
the listing of stations once. This interface would be awkward to use, but we'll fix it
shortly by adding a nice GUI. Also notice that if you exit the Python program, the
radio station last selected continues to play asVLC is still running.

The logic for automating VLC operation
The logic for implementing the Internet radio via a Telnet connection is very simple
at a high level. The following is the programmatic logic for implementing the radio:

def PlayRadio():
 global stationarray
 global stationcount
 global SessionFlag
 global strPlaylist
 global userloop
 #Parse the playlist file
 tmp = ParsePlaylist(strPlaylist)
 if tmp == False: #return is either the playlist or fail flag
 print("Playlist errorexiting")
 exit()
 else:

Internet Radio Projects 2b, 2c and 3

[6]

 stationarray=tmp
 if (stationcount != 0):
 SessionFlag = CreateSession(HOST, PORT, 2)
 if not SessionFlag:
 print("Unable to connect to VLC...exiting")
 exit()
 #If we get here we have a playlist and can talk to VLC
 AddStationtoPlaylist(1, False)
 print("Station 1 is the default")
 else:
 print("No stations to playexiting")
 exit()
 #Once the radio is running we just sit in a tight loop
 while userloop: #you can set userloop=False to debug in IDLE
 try:
 x=int(input("Enter a new station number or 0 to exit:
"))
 except ValueError:
 print("Enter a number.. ")
 else:
 if x == 0:
 break
 if 1 <= x <= (stationcount):
 AddStationtoPlaylist(x, False)
 else:
 print("Out of range, try again: ")
 exit()

The logic is as follows:

1.	 Parse the playlist if it exists and exit on errors.
2.	 Add the first station in the playlist on startup.
3.	 Sit in a loop waiting for user input.
4.	 Add the new user station selection or exit on zero.

There are, however, some error conditions that can occur annoyingly often. Even in
the desktop VLC UI, it's possible to click on a URL, and the station simply will not
play. There are no errors shown in the UI, and you have to click again to start the
channel playing.

Chapter 4

[7]

With an automated VLC over Telnet, the same problem may occur, where a station
URL is either not resolved or a connection to the remote server stalls for some
reason. To try to provide a robust retry mechanism, we looked in depth at the VLC
command set via Telnet. Here's what we found:

•	 Sending commands to VLC is done half duplex. You build a command string
programmatically in a Python string (or in netcat), and it is sent by a single
function from the Telnet library. VLC can take from several milliseconds up
to several hundred milliseconds to respond to a command request.

•	 The response to a command from VLC in the most primitive case is simply a
cursor string ">". For those commands that provide return information, the
information is sent followed by a cursor string.

•	 In most cases, VLC provides correct information, but if there is some form
of error, VLC can provide the wrong response or even change its mind after
it has sent a response. For example, our logic uses the is_playing flag. The
operation of this flag would seem to be quite clear, if set to one, the station is
playing audio; if set to zero, it's not playing.

In the logic used in radio.py, we depended on the is_playing flag to know
whether the station we had added to the playlist was resolved, whether a connection
was made to the source, and indeed whether audio was being played. However, it
did not work in exactly the way we expected.

•	 When you send a clear or add command to VLC if it is not currently playing
a station, the flag is zero. Life is good.

•	 When you send a clear or add command to VLC and it is currently playing
a station, it can take several tens of milliseconds for the is_playing flag to
drop to zero.

•	 If you send an add command to VLC and the is_playing flag is zero, the
flag sets within a few milliseconds. (Is life good? Well, maybe not.) However,
if the station connection has an error and you get no audio stream, VLC will
then drop the flag to zero. This can take 500 – 1000 ms to happen. If you read
the flag state earlier, however, you would not know that it has since been set
to zero.

The code for AddStationtoPlaylist is shown as follows:

def AddStationtoPlaylist(stationnum, retryflag):
 """Clear playlist and add new URL entry, if retryflag is True then
it's a retry"""
 loopcount=15 #loop for maximum 15 * 0.15 seconds = 2.25
seconds max
 global outbuf
 global inbuf

Internet Radio Projects 2b, 2c and 3

[8]

 global SessionFlag
 global tn
 if (SessionFlag == True):
 if retryflag: print("Retrying....")
 ClearPlaylist()
 if debug : print("Trying to Add station", stationnum)
 TelnetTx("add " + stationarray[((stationnum * 2) - 1)] +
"\n")
 TelnetRx("> ")
 TelnetTx("is_playing\n")
 TelnetRx("> ")
 #we need to check that the vlc is_playing flag drops to zero
 while inbuf[0] == 48 and loopcount:
 loopcount -= 1
 if debug : print("Loopcount = ", loopcount)
 if debug : print("The is_playing flag is still 0")
 if debug : print("Waiting for is_playing to set")
 TelnetTx("is_playing\n")
 if debug : print("Test is_playing flag")
 TelnetRx("> ") #loop to test flag again without
any delay
 #when is_playing is set to one we know that vlc is
responding
 #to the new station URL
 if debug : print("The is_playing flag is now 1")
 TelnetTx("is_playing\n")
 TelnetRx("> ")
 while inbuf[0] == 49 and loopcount: #49 = ascii 1
 loopcount -= 1

 if debug : print("Wait to see if is_playing is stable,
Loopcount = ", loopcount)
 sleep (0.15)
 TelnetTx("is_playing\n")
 TelnetRx("> ")
 if inbuf[0] == 48: AddStationtoPlaylist(stationnum, True
)
 if inbuf[0] == 49: continue
 return(True)
 else:
 print("Session is closed")
 return(False)

In the preceding code, there are two loops with a loop count of 15 that check that the
is_playing flag drops to zero after a clear command, and that the is_playing flag
remains set for at least a count of 15 when the URL is added.

Chapter 4

[9]

For the clear command loop, there is no delay in the loop, but program execution
does not proceed until the flag is zero. If you turn on the debug flag in the code, you
may notice that it typically takes from 2 – 7 loops for the is_playing flag to drop to
zero if it was set.

For the add URL command loop, there is a delay in the loop of 0.15 seconds and the
is_playing flag must be set for the complete loop count. This means the flag must
remain set for at least 2.25 seconds after adding the URL. If the flag does not remain
set for this time period after the add (retry) command is sent, we request a retry.
For the retry, we do not clear the playlist first since we know there is only one entry
in it, and this saves a little time.

Much more could be done in the logic to ensure that all potential errors are caught,
but the code, as implemented, is fairly robust. Improvements such as verifying that
the title is set correctly (which proves the resolution of the station URL) and verifying
that the statistics show that the audio is being decoded would be great additions.

Project 3 – implementing a TKinter GUI
for the Internet radio
With the text-mode interface (radio.py) complete and a basic GUI (tktest.py)
tested, we can move to the final integration tasks of the project. There is very little
new code in tkradio.py; it's simply a merging of previous work.

Window-based interfaces are typically user-event driven and this significantly
reduces the amount of programming required to support a GUI. In the case of a
TKinter/Python application, the task is split into roughly the following components:

•	 Initialization code
•	 Telnet communications functions
•	 Radio logic functions
•	 A base window to hold all the GUI components
•	 Labels to provide UI indicator functions
•	 Buttons to capture user action directives
•	 A Spinbox that holds the station list

The code for the final implementation is about 200 lines long, but it is split into
relatively easy-to-consume, small, functional blocks. We won't discuss all the code,
but it is worth covering some of the major elements.

Internet Radio Projects 2b, 2c and 3

[10]

The TKinter window reference and properties are set using the following code:

#Define the TKinter window
root=Tk() #Creates the window reference
root.wm_title("Internet Radio") # Window title
root.config(background = "#FFFFF0")

#TKinter variables, these can be bound to a control
vtime=StringVar(value="Time")
vstatus=StringVar(value="...........")
vspinnum=StringVar(value="")

Immediately following the window definition, we declare the special TKinter
variables. Each of these variables is bound to a particular GUI control or label
element, and if you alter the value, the control is updated to reflect the change in the
background. To ensure that the changes made to these variables are immediately
reflected in the controls, you can perform an update (root.update()) function if
required. If you don't force an immediate update, TKinter will render the update
in a lazy fashion based on internal timing.

The following is the AddStationtoPlaylist() code, which is responsible for
clearing the playlist, adding a new station to play, and monitoring the VLC state
using the is_playing flag:

def AddStationtoPlaylist(stationnum, retryflag):
 """Clear playist and add new URL entry, if retryflag is True then
it's a retry"""
 loopcount=15
 global outbuf
 global inbuf
 global SessionFlag
 global tn
 global vstatus
 if (SessionFlag == True):

 if retryflag:
 print("Retrying....")
 #set the UI status field and force an update
 vstatus.set("Retrying....")
 root.update()
 ClearPlaylist()
 if debug :
 print("Trying to Add station", stationnum)
 TelnetTx("add " + stationarray[((stationnum * 2) - 1)] +
"\n")

Chapter 4

[11]

 TelnetRx("> ")
 TelnetTx("is_playing\n")
 TelnetRx("> ")
 #we need to check that the vlc is_playing flag drops to zero
 while inbuf[0] == 48 and loopcount:
 loopcount -= 1
 if debug : print("Loopcount = ", loopcount)
 if debug : print("The is_playing flag is still 0")
 if debug : print("Waiting for is_playing to set")
 TelnetTx("is_playing\n")
 if debug : print("Test is_playing flag")
 TelnetRx("> ")
 #loop to test flag again without any delay
 #when is_playing is set to one we know
 #that vlc is responding to the new station URL
 if debug : print("The is_playing flag is now 1")
 TelnetTx("is_playing\n")
 TelnetRx("> ")
 while inbuf[0] == 49 and loopcount: #49 = ascii 1
 loopcount -= 1
 if debug :
 print("Wait to see if is_playing is stable,
 Loopcount = ", loopcount)
 time.sleep (0.15)
 TelnetTx("is_playing\n")
 TelnetRx("> ")
 #If is_playing=48=zero then we will do a retry
 if inbuf[0] == 48:
 AddStationtoPlaylist(stationnum, True)
 #if is_playing=49=one we assume all is ok
 if inbuf[0] == 49:
 vstatus.set("...........")
 continue
 return(True)
 else:
 print("Session is closed")
 return(False)

The preceding code handles both the initial clear/add function and the retry
function. When performing a retry, the TKinter variable, vstatus, is changed to
Retrying…. to provide a user interface indicator. When the station is finally playing
(as shown by the state of is_playing), the indicator is rewritten back to "………..".
Note here that root.update() is called to ensure that the interface is immediately
updated to provide a user indicator.

Internet Radio Projects 2b, 2c and 3

[12]

In the following code forPlayradio(), the code is much shorter than that of the
radio.py program. The reason is that there is no user input loop to be maintained.
Once the radio is playing a station, there is no need to loop while waiting for user
input. All user input is captured in the TKinter window message system. The
following code encapsulates the discussion in this paragraph:

def PlayRadio():
 global stationarray
 global stationcount
 global SessionFlag
 global strPlaylist
 global userloop
 if (stationcount != 0):
 SessionFlag = CreateSession(HOST, PORT, 2)
 if not SessionFlag:
 print("Unable to connect to VLC...exiting")
 exit()
 #If we get here we have a playlist and can talk to VLC
 AddStationtoPlaylist(1, False)
 print("Station 1 is the default")
 return(True)
 else:
 print("No stations to playexiting")
 exit()

The code to start the Internet radio is quite straightforward:

stationarray = ParsePlaylist(strPlaylist)

PlayRadio()

#Now start the GUI elements

buildwindow()

update_clock() #Kick off the clock

root.mainloop() #start window event loop

We start by parsing the playlist, and if that is okay, start the Telnet session and set
the default, station one, to play. The code to build the entire GUI is contained in the
buildwindow() function. Once the window is rendered, the clock is started, and
finally, we enter the windows' message loop with root.mainloop(). From this point
on, the only code called is due to the actions in the user interface and is called from
the TKinter message process.

Chapter 4

[13]

One thing you might notice in the code for the Internet radio is the liberal use of
debug print statements. These are a valuable way to check your functionality during
development, but be aware that printing to the console within the IDLE environment
is very slow. This impacts on any timing you may have implemented within your
program, so make sure you do final checks, either redirecting the output to a file or
by starting the program from a terminal session.

While we have not covered the use of the IDLE debug environment, you can
set breakpoints and step through the Python code in IDLE. This feature is really
helpful since it will open and step through libraries, and there is typically extensive
documentation that can help your understanding.

	_GoBack

