
[1]

Project 1a – Developing the
Talking Clock in Python 3

In Python Shell, select File | New Window; this will open a Python editor window.
You can now type Python code into the editor window. The editor understands
the rules for the code you type and will color code the text and manage indentation
for you.

In the Python editor, perform the following steps:

1.	 Type #!/usr/bin/python3.
2.	 Select File | Save As and save the program as p3_clock.py to the directory

/home/pi/tclock/bin.
3.	 Use File Manager to open the /home/pi/tclock/bin directory.
4.	 Click on Tools | Run a Command in the Current Folder.
5.	 In the Run a Command... form, enter chmod +x ./p3_clock.py,

and then click on OK to set the file's executable property.

Project 1a – Developing the Talking Clock in Python 3

[2]

The following image captures the preceding steps:

The first line of text you just entered into the file is called a shebang
string in Unix/Linux. Although it has nothing to do with Python
programs, it is used by shell programs, such as Bash, to resolve
the executable required for the program or script. When a file is
executed and it starts with #!, the rest of the line is used to resolve the
executable that handles the following text. The filename is appended
as a command-line parameter. It is always a good policy to place the
appropriate shebang in your Bash scripts and Python programs.

Now, we will implement our talking clock in Python code. With better programmatic
control under Python, you won't need to use cron to start the program regularly and
you can make the clock run more like a service.

Our talking clock had the following functionality as a Bash script implementation:

•	 Automatically start every minute (which was a cron function)
•	 Read the system time to get the local time on your Pi
•	 Produce a correctly formatted tts service time string
•	 Convert the time string to an audio stream
•	 Announce the time
•	 Exit (which simply waits for cron to start the script again)

Chapter 2

[3]

We will respecify the functionality for a Python implementation:

•	 When started, run as a process with no user interface
•	 *-Get the local time
•	 Wait until seconds is 00
•	 Produce a correctly formatted tts time string
•	 Call mpg123 to get the time string returned as an MPEG audio stream

announcement
•	 Sleep for 400 milliseconds
•	 Repeat from the step marked as *

In the Python editor window, type in the Python program code as shown here:

#!/usr/bin/python3

import os, time

#string variable for Google tts
gstring1="/usr/bin/mpg123 -q 'http://translate.google.com/translate_
tts?tl=en&q=The time is "
#variables
tsec1=""
time1=""
debug=False

#Code
while True:
 tsec1=time.strftime("%S")
 #if seconds roll over to 00 call audio
 if (tsec1 == "00"):
 time1 = time.strftime('%l:%M %p')
 gstring2=gstring1 + time1 +"'"
 if debug: print(gstring2)
 status=os.system(gstring2)
 # loops every 400 milliseconds
 # to update the time
 time.sleep(0.4)

Project 1a – Developing the Talking Clock in Python 3

[4]

Starting from the top, here is a detailed explanation of the Python code:

•	 The import statement allows the addition of libraries of additional
functionality to be loaded by the interpreter. In this case, you loaded
additional time and OS functions.

•	 Four variables are defined; three are string variables (quotes surround the
strings) and one is a flag value (debug).

•	 The program really gets started at the while statement. This is a simple
infinite loop since True is always True. Note that the while statement ends
in a ":" and all subsequent code is indented by four spaces; this is how
Python shows loop and logic structures by indenting subsequent code.

•	 In the while loop, the variable tsec1 is made equal to a string of the seconds
value from the current time maintained by the OS.

•	 The if statement checks whether tsec1 is equal to a string value of 00 and
if it is, the code block indented under the if statement is executed. If it is not
equal to 00, then the block is skipped.

•	 If the string value tsec1 is 00, then the four lines of code read the string
values for the time and meridian, build the command string to get the tts
audio stream, and call os.system to have this executed. Although the call
returned a status value, we did not use it. There is also a line of code that
prints out the gstring2 value if debug=True.

•	 If the tsec1 variable is not equal to 00 or if the inner block of code has
finished execution, then the program calls time.sleep for 400 ms. This
sleep period simply means that for most of each minute, the program will be
asleep using very little CPU resource. However, it wakes to check the current
value of the seconds count about twice per second, so it will never miss the
rollover to 00.

Running your Python clock in
Python Shell
Now that you have entered the code into the Python editor window, you can start
and run the application.

Chapter 2

[5]

In the editor window, perform the following steps:

1.	 Click on Run | Run module, or simply select F5 on the keyboard.
This will bring the Python Shell window to the foreground, reset the shell,
and then execute your program. The program will announce the time in less
than a minute.

2.	 If you set debug=True in the program, then the string sent to the OS will be
printed in the Python Shell window.

°° To stop the program in the Python Shell window, select Shell |
Restart Shell or enter Ctrl + F6 on the keyboard. The screen image
for these options is shown here:

Although you have completely rewritten the talking clock as a Python 3 application,
you could have reused the Bash script you created to simplify the task. Look at the
code for p3_sh_clock.py and see if you can work out what it is doing:

#! /usr/bin/python3

import time
import os

#variables
tsec1=""

Project 1a – Developing the Talking Clock in Python 3

[6]

#Code
while True :
 tsec1=time.strftime("%S")
 #if seconds roll over to 00 call audio
 if (tsec1 == "00"):
 status=os.system("/home/pi/tclock/bin/tclock.sh")
 # loops every 400 milliseconds
 # to update the time
 time.sleep(0.4)

This code is a very simple wrapper that does the timing and simply calls tclock.sh
when it is time to announce the time.

Reusing the Bash script implementation achieves the same goal, but the Python
program replaces the cron job. This can be very useful if you have complex timing
and schedules for a series of administrative or solution tasks, for example, perhaps
the talking clock could have chimes for just the hourly and quarter-hourly messages
or a more complex set of alarms. You are limited in what might be done when there is
no user interface for the clock, but this could be added using one of several graphical
interface packages that present a set of user controls.

Options for running your Python talking
clock
Now that you have checked the functionality of the code for the talking clock, there
are several options to start and run either of the programs.

You know how to start the clock from the Python editor using the F5 function key
and to reset using Ctrl + F6 in the Python Shell window. Now, let's look at some
other ways to start and stop the program:

1.	 Open File Manager and go to the /home/pi/tclock/bin directory and
double-click on the file icon for p3_clock.py, which will raise a form
providing an option to execute the file. This shows up because you set
the executable flag for the file. Execute the file, and it will show up under
Task Manager, as shown in the following screenshot:

Chapter 2

[7]

2.	 In Task Manager, you can right-click and use Kill on the executable in
the user process list to stop it. It will show up in the user process list because
File Manager is running with user permissions.

3.	 Open a Terminal session in the /home/pi/tclock/bin directory and type
./p3_clock.py to start it.

4.	 To stop the program, you can use Ctrl + C in the Terminal window. This
method works because of the shebang at the beginning of the file, which tells
the shell to use Python 3. In Task Manager, you can right-click and use Kill
on the executable in the user process list to stop it. If you use sudo ./p3_
clock.py to start it, then it will be in the root process list in Task Manager.

If you type ./p3_clock.py, the session pauses until the program
exits. You can exit from the Terminal session by selecting Ctrl + C,
which also stops the program. You can also type ./p3_clock.py
&, and this causes the program to be started, but the session does
not wait for it to exit. You get your command prompt back, but
the program still belongs to your Terminal session, so if you close
the window (terminate the session), then the clock program
terminates too.

Project 1a – Developing the Talking Clock in Python 3

[8]

5.	 Open a Terminal window and type Python3 /home/pi/tclock/bin/p3_
clock.py. To stop the program, use Ctrl + C in the Terminal session window.

The process is added to the User process list in Task Manager.
This works because you provided two command-line parameters;
the shell started Python 3 and was passed the file path to the
Python program. When you look in Task Manager, you will see
that it shows up as python3 and not as p3_clock.py.

6.	 Open a Terminal window and type sudo Python3 /home/pi/tclock/bin/
p3_clock.py. To stop the program, you can use Ctrl + C in the Terminal
session window.

This method has a wrinkle to it; you won't see the process name in the
user process list as it was started by the root (the superuser).
In Task Manager, you have to go to View | Show Root tasks to see
it, and you cannot kill the program in the Task Manager window as
you don't have root privileges. If you want to kill the process, look at
the process ID number (PID), and, from a Terminal session command
prompt, type sudo kill xxxx, where xxxx is the PID number.

Finally, if you want the program to start automatically without user interaction, you
can use cron to start the program whenever the computer boots or reboots. Instead of
using cron to specify a start time, or a regular start time, you can use a special flag to
tell cron to start the program at boot time.

Unfortunately, the GUI you installed to make creating cron jobs easier does
not understand this extension—so you have to use a special utility tool to add
this information:

1.	 Open a Terminal services windows and type sudo crontab -e to open a
nano editor window with the filename of the crontab in a tmp directory.

2.	 The window will show cron instructions as comments; scroll down to the
first empty line after the last comment and type @reboot python3 /home/
pi/tclock/bin/p3_clock.py & followed by the enter key.

3.	 Click Ctrl + X followed by y and Enter to save the file.

Chapter 2

[9]

4.	 To see that you made no mistakes or to view the current crontab setting,
you can type sudo crontab –l, which will print out the table entry.

At the command line, you typed sudo crontab –e, which
edits the root user crontab; if you type crontab –e, you are
editing the user crontab. Every user can have a separate crontab
setting that makes it possible to load programs automatically for
certain users as they log in or defines the crontab for root, which
applies to all users.

5.	 You can now type sudo reboot in the terminal session or use the Menu |
Shutdown option to reboot the system. When the system reboots, the talking
clock should be started. Since you added it as the root user, it will show as
python3 in the root process list. If you edit the root crontab again, remove the
@reboot command line, and reboot, otherwise the talking clock won't start.

